切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2012, Vol. 06 ›› Issue (02) : 125 -139. doi: 10.3877/cma. j. issn.1674-0807.2012.02.002

论著

利用基质辅助激光解析电离飞行时间质谱联合磁珠技术寻找乳腺癌血清蛋白标志物
黄欣1, 徐雅莉1, 彭理1, 周易冬1, 茅枫1, 关竞红1, 林燕1, 孙强1,()   
  1. 1.100730 北京,中国医学科学院北京协和医院乳腺外科
  • 收稿日期:2010-09-29 出版日期:2012-04-01
  • 通信作者: 孙强

Searching for serum protein biomarkers of breast cancer patients using MALDI-TOF-MS and magnetic beads technology

Xin HUANG1, Ya-li XU1, Li PENG1, Yi-dong ZHOU1, Feng MAO1, Jing-hong GUAN1, Yan LIN1, Qiang SUN1,()   

  1. 1.Breast Surgery Department, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730,China
  • Received:2010-09-29 Published:2012-04-01
  • Corresponding author: Qiang SUN
引用本文:

黄欣, 徐雅莉, 彭理, 周易冬, 茅枫, 关竞红, 林燕, 孙强. 利用基质辅助激光解析电离飞行时间质谱联合磁珠技术寻找乳腺癌血清蛋白标志物[J/OL]. 中华乳腺病杂志(电子版), 2012, 06(02): 125-139.

Xin HUANG, Ya-li XU, Li PENG, Yi-dong ZHOU, Feng MAO, Jing-hong GUAN, Yan LIN, Qiang SUN. Searching for serum protein biomarkers of breast cancer patients using MALDI-TOF-MS and magnetic beads technology[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2012, 06(02): 125-139.

目的

探索乳腺癌与乳腺良性疾病和健康人血清蛋白质谱表达差异,寻找具有鉴别诊断意义的血清蛋白标志物。

方法

实验分为两大组:(1)决策树模型组共293 例标本, 包括3 个亚组,分别为乳腺癌组110 例标本、乳腺良性疾病组113 例和健康组70 例,建立决策树(乳腺癌诊断)模型;(2)盲法验证组共34 例标本, 包括3 个亚组分别为乳腺癌组7 例标本、乳腺良性疾病组13 例及健康组14 例,进行盲筛验证决策树模型。 采用弱阳离子磁珠捕获乳腺癌患者血清中的蛋白,使用基质辅助激光解析电离飞行时间质谱(MALDI-TOF-MS)仪检测绘制蛋白峰。 应用Biomarker Wizard TM 3.1 软件和Biomarker Patterns TM 5.0 软件分析数据。 统计分析采用方差分析法和秩和检验法。计算决策树模型诊断的准确率以及盲法验证模型诊断乳腺癌的敏感性和特异性。

结果

在决策树模型组中检测到了47 个差异有统计学意义的蛋白峰(P<0.050)。 应用BPS 5.0 软件,以相对损失最小的原则从这47 个蛋白峰中选取了4 个蛋白峰,分别为相对分子质量(Mr,本文中相当于质荷比m/z) 9292.5、Mr 11707.2、Mr 15504.5 和Mr 16107.9,用其建立决策树模型(乳腺癌诊断模型)。 该模型判断乳腺癌、乳腺良性疾病及健康人的准确率分别为99.09%、95.58%、92.86%。 盲法验证该模型诊断乳腺癌的敏感性为71.43%,特异性为88.89%。

结论

应用MALDI-TOF-MS 联合磁珠技术可以检测乳腺癌血清中差异蛋白峰并可以建立决策树(乳腺癌诊断)模型。 选择的4 个差异蛋白蜂建立的决策树模型诊断乳腺癌具有好的准确性和较好的敏感性及特异性。 决策树模型能将乳腺癌与乳腺良性疾病及健康人相鉴别。 寻找到的Mr 9292.54、Mr 11707.2、Mr 15504.5以及Mr16107.9 的蛋白峰有望成为鉴别乳腺癌与乳腺良性疾病和健康人的有效的肿瘤血清蛋白标记物。

Objective

To explore the different expressions of proteins in serum among patients with breast cancer, benign mammary disease and healthy people and find out potential serum biomarkers differentiating breast cancer from benign mammary disease and healthy people.

Methods

This study included two experiment groups, the decision tree model group with three subgroups including 110 cases of breast cancer,113 cases of benign mammary disease and 70 healthy controls to build breast cancer diagnosis model, and the blind test group with three subgroups including 7 cases of breast cancer,13 cases of benign mammary disease and 14 healthy controls to test the sensitivity and specificity of the decision tree model. The serum proteins were captured using the weak cation magnetic beads, and differently expressed proteins were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Biomarker Wizard TM Software 3.1 and Biomarker Patterns TM Software (BPS) 5.0 were used to analyze the data. Variance analysis or rank sum test was applied for statistical analysis. The accuracy rate of the decision tree model and the sensitivity and specificity of the model tested by blind test were calculated.

Results

A total of 47 statistically different protein peaks (P<0.05)were tested in the decision tree model group. Based on the principle of least relative loss, four protein peaks with the relative molecular mass (Mr, equal to m/z) of 9292.54,11707.2,15504.5 and 16107.9 were selected from the 47 protein peaks, and they used to construct the decision tree model for diagnosis of breast cancer using BPS 5.0. The accuracy rate of the decision tree identifying breast cancer, benign mammary disease and healthy people was 99.09%,95.58% and 92.86%,respectively. The blind test showed that the sensitivity and specificity of the decision tree diagnosing breast cancer was 71.43% and 88.89%,respectively.

Conclusions

Using the technique of MALDI-TOF MS combined with magnetic beads, different serum protein peaks in breast cancer can be detected. The decision tree model constructed with the four potential biomarkers has good accuracy and better sensitivity and specificity of diagnosing breast cancer. The decision tree model can identify breast cancer from not only benign breast disease but also healthy person. The four protein peaks of Mr 9292.54, Mr 11707.2, Mr 15504.5 and Mr 16107.9 selected are promising serum protein biomarkers for breast cancer.

图1 乳腺癌诊断模型(决策树模型) Node:结点;Terminal:终结点; Mr: 相对分子质量;CA:乳腺癌;DC:乳腺良性疾病;HC:健康对照此决策树共有4 个判断节点,每个判断节点系统会提出一个判断问题,答案为“是”将分配到节点左侧,答案为“否”则分配到右侧。 第1 个节点判断问题是“Mr 9292.5 蛋白峰强度≤25.3835 ?”, 第2 个节点问题是“ Mr 11707.2 蛋白峰强度≤1.57385 ?”,第3 个节点问题是“Mr 15504.5 蛋白峰强度≤0.378529 ?”,第4 个节点问题是“Mr 16107.9 蛋白峰强度≤22.4336 ?”。该决策树还有5 个终结点,终结点3、4、5 为乳腺癌,终节点1 为乳腺良性疾病,终节点2 为健康对照。 以乳腺癌为例,当满足Mr 9292.5>25.3835 或Mr 9292.5<25.3835 且Mr 11707.2>1.57385 且Mr 15504.5>0.378529 或Mr 9292.5<25.3835 且Mr 11707_2>1.57385 且Mr 15504.5<0.378529 且Mr 16107.9>22.4336 时则判断为乳腺癌。 以此类推。
图2 相对分子质量(Mr)9292.5 的差异蛋白峰在各组中的蛋白质波峰质谱图及模拟胶图 a:蛋白质波峰质谱图;b:模拟胶图;CA:乳腺癌;DC:乳腺良性疾病;HC:健康对照;Mr 9292.5 的蛋白峰在CA 组与DC 组及健康对照组中的表达有明显差异,在CA 组中高表达。
图3 相对分子质量(Mr)11707.2 的差异蛋白峰在各组中的蛋白质波峰质谱图及模拟胶图 a:蛋白质波峰质谱图;b:模拟胶图;CA:乳腺癌;DC:乳腺良性疾病;HC:健康对照;Mr11707.2 蛋白峰在CA 组与DC 组及健康对照组中的表达有明显差异,在CA 组中高表达。
图4 相对分子质量(Mr)15504.5 及Mr 16107.9 差异蛋白峰在各组中的蛋白质波峰质谱图及模拟胶图 a:蛋白质波峰质谱图;b:模拟胶图;CA:乳腺癌;DC:乳腺良性疾病;HC:健康对照
表1 经计算机筛选及差异有统计学意义的建立决策树模型的4 个蛋白峰
表2 决策树模型的准确性及盲法验证该模型诊断乳腺癌的敏感性及特异性(例数)
图5 167 号血清标本的蛋白质谱 1:为洗脱磁珠后含有蛋白的原液;167-(1):为磁珠与血清孵育后的上清液;167-(2):为有蛋白结合的磁珠的NaAC 清洗液,洗脱一次;167-(3):为有蛋白结合的磁珠的NaAC清洗液,洗脱两次。
图6 相对分子质量(Mr)15504.5 差异蛋白峰在各组中的蛋白质波峰质谱图 CA:乳腺癌;DC:乳腺良性疾病;HC:健康对照。 Mr15504.5 的蛋白峰强度在乳腺癌、乳腺良性疾病和健康对照中依次降低。
[1]
Gast, MW Schellens JH,Beijnen JH. Clinical proteomics in breast cancer:a review [J]. Breast Cancer Res Treat,2009,116(11):17-29.
[2]
Garrisi VM, Abbate I, Quaranta M, et al. SELDI-TOF serum proteomics and breast cancer: which perspective? [J].Expert Rev Proteomics,2008,5(6):779-785.
[3]
Pietrowska M,Marczak L, Polanska J, et al. Mass spectrometry-based serum proteome pattern analysis in molecular diagnostics of early stage breast cancer [J]. J Transl Med,2009,7(60):1-13.
[4]
Wu W, Hu W, Kavanagh JJ. Proteomics in cancer research [J]. Int J Gyn Cancer,2002,12(5):409-678.
[5]
Sauter ER,Zhu W,Fan XJ,et al. Proteomic analysis of nipple aspirate fluid to detect biologic markers of breast cancer[J]. Br J Cancer,2002,86(9):1440-1443.
[6]
Simpson RJ, Bernhard OK, Greening DW, et al. Proteomics-driven cancer biomarker discovery: looking to the future[J]. Curr Opin Chem Biol,2008,12(1):72-77.
[7]
de Noo ME, Deelder A, van der Werff M, et al. MALDI-TOF serum protein profiling for the detection of breast cancer[J]. Onkologie,2006,29(11):501-506.
[8]
Li YZ,HU CJ,Leng XM,et al. Promising diagnostic biomarkers for primary biliary cirrhosis identified with magnetic beads and MALDI-TOF-MS [J]. Anat Rec (Hoboken),2009,292(3):455-460.
[9]
徐罡,项翠琴,陆晔,等. 应用SELDI-TOF-MS 技术建立肾细胞癌和肾脏良性占位的血清蛋白质谱筛选模型[J]. 中华泌尿外科杂志,2007,28(Suppl):22-25.
[10]
Byvatov E, Schneider G. Support vector machine applications in bioinformatics [J]. Appl Bioinformatics, 2003, 2(2):67-77.
[11]
Vlahou A, Laronga C, Wilson L, et al. A novel approach toward development of a rapid blood test for breast cancer [J].Clin Breast Cancer,2003,4(3):203-209.
[12]
Li J,Zhang Z,Rosenzweig J,et al. Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer [J]. Clin Chem,2002,48(8):1296-1304.
[13]
Callesen AK,Vach W,Jorgensen PE,et al. Combined experimental and statistical strategy for mass spectrometry based serum protein profiling for diagnosis of breast cancer: a case-control study [J]. J Proteome Res,2008,7(4):1419-1426.
[14]
van der Werff MP, Mertens B, de Noo ME, et al. Case-control breast cancer study of MALDI-TOF proteomic mass spectrometry data on serum samples [J]. Stat Appl Genet Mol Biol,2008,7(2): Article 2.
[15]
Shin S, Cazares L, Schneider H, et al. Serum biomarkers to differentiate benign and malignant mammographic lesions[J]. J Am Coll Surg,2007,204(5):1065-1071.
[16]
Jemal A, Siegel R, Ward E, et al. Cancer statistics [J]. CA Cancer J Clin,2008,58(2):71-96.
[17]
刘彩刚,路平,赵祥,等. SELDI-TOF-MS 筛查乳腺癌患者血清特异性蛋白的探讨[J]. 中国肿瘤临床,2007,13(23):728-730.
[18]
Castor CW, Miller JW, Walz DA. Structural and biological characteristics of connective tissue activating peptide (CTAP-Ⅲ), a major human platelet-derived growth factor [J]. Proc Natl Acad Sci USA,1983,80(3):765-769.
[19]
Kokubun M, Imafuku Y, Okada M, et al. Serum amyloid A (SAA) concentration varies among rheumatoid arthritis patients estimated by SAA/CRP ratio [J]. Clin Chim Acta,2005,360(1-2):97-102.
[20]
Yokoi K, Shih LC, Kobayashi R, et al. Serum amyloid A as a tumor marker in sera of nude mice with orthotopic human pancreatic cancer and in plasma of patients with pancreatic cancer [J]. Int J Oncol,2005,27(5):1361-1369.
[21]
Datta S. Classification of breast cancer versus normal samples from mass spectrometry profiles using linear discriminant analysis of important features selected by random forest [J]. Stat Appl Genet Mol Biol,2008,7(2):Article 7.
[22]
Hoefsloot HC, Smit S, Smilde AK. A classification model for the Leiden proteomics competition [J]. Stat Appl Genet Mol Biol,2008,7(2):Article 8.
[23]
Strimenopoulou F,Brown PJ. Empirical Bayes logistic regression [J]. Stat Appl Genet Mol Biol,2008,7(2):Article 9.
[24]
Goeman JJ. Autocorrelated logistic ridge regression for prediction based on proteomics spectra. [J]. Stat Appl Genet Mol Biol,2008,7(2):Article 10.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 河北省抗癌协会乳腺癌专业委员会护理协作组. 乳腺癌中心静脉通路护理管理专家共识[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 321-329.
[3] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[4] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[5] 邱琳, 刘锦辉, 组木热提·吐尔洪, 马悦心, 冷晓玲. 超声影像组学对致密型乳腺背景中非肿块型乳腺癌的诊断价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 353-360.
[6] 程燕妮, 樊菁, 肖瑶, 舒瑞, 明昊, 党晓智, 宋宏萍. 乳腺组织定位标记夹的应用与进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 361-365.
[7] 涂盛楠, 胡芬, 张娟, 蔡海峰, 杨俊泉. 天然植物提取物在乳腺癌治疗中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 366-370.
[8] 朱文婷, 顾鹏, 孙星. 非酒精性脂肪性肝病对乳腺癌发生发展及治疗的影响[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 371-375.
[9] 周涵, 武胡雯, 张培深, 邓晗彬, 范闻轩, 李嘉诚, 程少文. 蛋白质组学在慢性难愈合创面研究中的应用进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 536-540.
[10] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[11] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[12] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[13] 王玲艳, 高春晖, 冯雪园, 崔鑫淼, 刘欢, 赵文明, 张金库. 循环肿瘤细胞在乳腺癌新辅助及术后辅助治疗中的应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 630-633.
[14] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
[15] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
阅读次数
全文


摘要